Documentation

Std.Tactic.Omega.Int

Lemmas about Nat and Int needed internally by omega. #

These statements are useful for constructing proof expressions, but unlikely to be widely useful, so are inside the Std.Tactic.Omega namespace.

If you do find a use for them, please move them into the appropriate file and namespace!

theorem Std.Tactic.Omega.Int.ofNat_lt_of_lt {n : Nat} {m : Nat} :
n < mn < m

Alias of the reverse direction of Int.ofNat_lt.

theorem Std.Tactic.Omega.Int.ofNat_le_of_le {m : Nat} {n : Nat} :
m nm n

Alias of the reverse direction of Int.ofNat_le.

theorem Std.Tactic.Omega.Int.lt_of_not_ge {a : Int} {b : Int} :
¬a bb < a

Alias of the forward direction of Int.not_le.

theorem Std.Tactic.Omega.Int.not_le_of_lt {a : Int} {b : Int} :
b < a¬a b

Alias of the reverse direction of Int.not_le.

theorem Std.Tactic.Omega.Int.lt_of_not_le {a : Int} {b : Int} :
¬a bb < a

Alias of the forward direction of Int.not_le.

theorem Std.Tactic.Omega.Int.lt_le_asymm {a : Int} {b : Int} :
b < a¬a b

Alias of the reverse direction of Int.not_le.

theorem Std.Tactic.Omega.Int.not_lt_of_ge {a : Int} {b : Int} :
b a¬a < b

Alias of the reverse direction of Int.not_lt.

theorem Std.Tactic.Omega.Int.le_of_not_gt {a : Int} {b : Int} :
¬a < bb a

Alias of the forward direction of Int.not_lt.

theorem Std.Tactic.Omega.Int.le_of_not_lt {a : Int} {b : Int} :
¬a < bb a

Alias of the forward direction of Int.not_lt.

theorem Std.Tactic.Omega.Int.not_lt_of_le {a : Int} {b : Int} :
b a¬a < b

Alias of the reverse direction of Int.not_lt.

theorem Std.Tactic.Omega.Int.le_lt_asymm {a : Int} {b : Int} :
b a¬a < b

Alias of the reverse direction of Int.not_lt.

theorem Std.Tactic.Omega.Int.add_congr {a : Int} {b : Int} {c : Int} {d : Int} (h₁ : a = b) (h₂ : c = d) :
a + c = b + d
theorem Std.Tactic.Omega.Int.mul_congr {a : Int} {b : Int} {c : Int} {d : Int} (h₁ : a = b) (h₂ : c = d) :
a * c = b * d
theorem Std.Tactic.Omega.Int.mul_congr_left {a : Int} {b : Int} (h₁ : a = b) (c : Int) :
a * c = b * c
theorem Std.Tactic.Omega.Int.sub_congr {a : Int} {b : Int} {c : Int} {d : Int} (h₁ : a = b) (h₂ : c = d) :
a - c = b - d
theorem Std.Tactic.Omega.Int.neg_congr {a : Int} {b : Int} (h₁ : a = b) :
-a = -b
theorem Std.Tactic.Omega.Int.lt_of_gt {x : Int} {y : Int} (h : x > y) :
y < x
theorem Std.Tactic.Omega.Int.le_of_ge {x : Int} {y : Int} (h : x y) :
y x
theorem Std.Tactic.Omega.Int.ofNat_sub_eq_zero {b : Nat} {a : Nat} (h : ¬b a) :
(a - b) = 0
theorem Std.Tactic.Omega.Int.ofNat_sub_dichotomy {a : Nat} {b : Nat} :
b a (a - b) = a - b a < b (a - b) = 0
theorem Std.Tactic.Omega.Int.ofNat_congr {a : Nat} {b : Nat} (h : a = b) :
a = b
theorem Std.Tactic.Omega.Int.ofNat_sub_sub {a : Nat} {b : Nat} {c : Nat} :
(a - b - c) = (a - (b + c))
theorem Std.Tactic.Omega.Int.add_le_iff_le_sub (a : Int) (b : Int) (c : Int) :
a + b c a c - b
theorem Std.Tactic.Omega.Int.le_add_iff_sub_le (a : Int) (b : Int) (c : Int) :
a b + c a - c b
theorem Std.Tactic.Omega.Int.ofNat_fst_mk {β : Type u_1} {x : Nat} {y : β} :
(x, y).fst = x
theorem Std.Tactic.Omega.Int.ofNat_snd_mk {α : Type u_1} {x : α} {y : Nat} :
(x, y).snd = y
theorem Std.Tactic.Omega.Nat.lt_of_gt {x : Nat} {y : Nat} (h : x > y) :
y < x
theorem Std.Tactic.Omega.Nat.le_of_ge {x : Nat} {y : Nat} (h : x y) :
y x
theorem Std.Tactic.Omega.Prod.of_lex :
∀ {α : Type u_1} {r : ααProp} {β : Type u_2} {s : ββProp} {p q : α × β}, Prod.Lex r s p qr p.fst q.fst p.fst = q.fst s p.snd q.snd
theorem Std.Tactic.Omega.Prod.of_not_lex {α : Type u_1} {r : ααProp} [DecidableEq α] {β : Type u_2} {s : ββProp} {p : α × β} {q : α × β} (w : ¬Prod.Lex r s p q) :
¬r p.fst q.fst (p.fst q.fst ¬s p.snd q.snd)
theorem Std.Tactic.Omega.Prod.fst_mk :
∀ {α : Type u_1} {x : α} {β : Type u_2} {y : β}, (x, y).fst = x
theorem Std.Tactic.Omega.Prod.snd_mk :
∀ {α : Type u_1} {x : α} {α_1 : Type u_2} {y : α_1}, (x, y).snd = y