Documentation

Mathlib.Order.ConditionallyCompleteLattice.Finset

Conditionally complete lattices and finite sets. #

theorem Finset.Nonempty.sup'_eq_cSup_image {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {s : Finset β} (hs : s.Nonempty) (f : βα) :
Finset.sup' s hs f = sSup (f '' s)
theorem Finset.Nonempty.sup'_id_eq_cSup {α : Type u_1} [ConditionallyCompleteLattice α] {s : Finset α} (hs : s.Nonempty) :
Finset.sup' s hs id = sSup s
theorem Finset.Nonempty.cSup_eq_max' {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Finset α} (h : s.Nonempty) :
sSup s = Finset.max' s h
theorem Finset.Nonempty.cInf_eq_min' {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Finset α} (h : s.Nonempty) :
sInf s = Finset.min' s h
theorem Finset.Nonempty.cSup_mem {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Finset α} (h : s.Nonempty) :
sSup s s
theorem Finset.Nonempty.cInf_mem {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Finset α} (h : s.Nonempty) :
sInf s s
theorem Set.Finite.cSup_lt_iff {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Set α} {a : α} (hs : Set.Finite s) (h : Set.Nonempty s) :
sSup s < a xs, x < a
theorem Set.Finite.lt_cInf_iff {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Set α} {a : α} (hs : Set.Finite s) (h : Set.Nonempty s) :
a < sInf s xs, a < x

Relation between Sup / Inf and Finset.sup' / Finset.inf' #

Like the Sup of a ConditionallyCompleteLattice, Finset.sup' also requires the set to be non-empty. As a result, we can translate between the two.

theorem Finset.sup'_eq_csSup_image {α : Type u_1} {ι : Type u_4} [ConditionallyCompleteLattice α] (s : Finset ι) (H : s.Nonempty) (f : ια) :
Finset.sup' s H f = sSup (f '' s)
theorem Finset.inf'_eq_csInf_image {α : Type u_1} {ι : Type u_4} [ConditionallyCompleteLattice α] (s : Finset ι) (hs : s.Nonempty) (f : ια) :
Finset.inf' s hs f = sInf (f '' s)
theorem Finset.sup'_id_eq_csSup {α : Type u_1} [ConditionallyCompleteLattice α] (s : Finset α) (hs : s.Nonempty) :
Finset.sup' s hs id = sSup s
theorem Finset.inf'_id_eq_csInf {α : Type u_1} [ConditionallyCompleteLattice α] (s : Finset α) (hs : s.Nonempty) :
Finset.inf' s hs id = sInf s
theorem Finset.sup'_univ_eq_ciSup {α : Type u_1} {ι : Type u_4} [ConditionallyCompleteLattice α] [Fintype ι] [Nonempty ι] (f : ια) :
Finset.sup' Finset.univ (_ : Finset.univ.Nonempty) f = ⨆ (i : ι), f i
theorem Finset.inf'_univ_eq_ciInf {α : Type u_1} {ι : Type u_4} [ConditionallyCompleteLattice α] [Fintype ι] [Nonempty ι] (f : ια) :
Finset.inf' Finset.univ (_ : Finset.univ.Nonempty) f = ⨅ (i : ι), f i