Documentation

Mathlib.RingTheory.Ideal.Basic

Ideals over a ring #

This file defines Ideal R, the type of (left) ideals over a ring R. Note that over commutative rings, left ideals and two-sided ideals are equivalent.

Implementation notes #

Ideal R is implemented using Submodule R R, where is interpreted as *.

TODO #

Support right ideals, and two-sided ideals over non-commutative rings.

@[reducible]
def Ideal (R : Type u) [Semiring R] :

A (left) ideal in a semiring R is an additive submonoid s such that a * b ∈ s whenever b ∈ s. If R is a ring, then s is an additive subgroup.

Equations
Instances For
    theorem Ideal.zero_mem {α : Type u} [Semiring α] (I : Ideal α) :
    0 I
    theorem Ideal.add_mem {α : Type u} [Semiring α] (I : Ideal α) {a : α} {b : α} :
    a Ib Ia + b I
    theorem Ideal.mul_mem_left {α : Type u} [Semiring α] (I : Ideal α) (a : α) {b : α} :
    b Ia * b I
    theorem Ideal.ext {α : Type u} [Semiring α] {I : Ideal α} {J : Ideal α} (h : ∀ (x : α), x I x J) :
    I = J
    theorem Ideal.sum_mem {α : Type u} [Semiring α] (I : Ideal α) {ι : Type u_1} {t : Finset ι} {f : ια} :
    (ct, f c I)(Finset.sum t fun (i : ι) => f i) I
    theorem Ideal.eq_top_of_unit_mem {α : Type u} [Semiring α] (I : Ideal α) (x : α) (y : α) (hx : x I) (h : y * x = 1) :
    I =
    theorem Ideal.eq_top_of_isUnit_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} (hx : x I) (h : IsUnit x) :
    I =
    theorem Ideal.eq_top_iff_one {α : Type u} [Semiring α] (I : Ideal α) :
    I = 1 I
    theorem Ideal.ne_top_iff_one {α : Type u} [Semiring α] (I : Ideal α) :
    I 1I
    @[simp]
    theorem Ideal.unit_mul_mem_iff_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} {y : α} (hy : IsUnit y) :
    y * x I x I
    def Ideal.span {α : Type u} [Semiring α] (s : Set α) :

    The ideal generated by a subset of a ring

    Equations
    Instances For
      @[simp]
      theorem Ideal.submodule_span_eq {α : Type u} [Semiring α] {s : Set α} :
      @[simp]
      @[simp]
      theorem Ideal.span_univ {α : Type u} [Semiring α] :
      Ideal.span Set.univ =
      theorem Ideal.span_union {α : Type u} [Semiring α] (s : Set α) (t : Set α) :
      theorem Ideal.span_iUnion {α : Type u} [Semiring α] {ι : Sort u_1} (s : ιSet α) :
      Ideal.span (⋃ (i : ι), s i) = ⨆ (i : ι), Ideal.span (s i)
      theorem Ideal.mem_span {α : Type u} [Semiring α] {s : Set α} (x : α) :
      x Ideal.span s ∀ (p : Ideal α), s px p
      theorem Ideal.subset_span {α : Type u} [Semiring α] {s : Set α} :
      s (Ideal.span s)
      theorem Ideal.span_le {α : Type u} [Semiring α] {s : Set α} {I : Ideal α} :
      Ideal.span s I s I
      theorem Ideal.span_mono {α : Type u} [Semiring α] {s : Set α} {t : Set α} :
      @[simp]
      theorem Ideal.span_eq {α : Type u} [Semiring α] (I : Ideal α) :
      Ideal.span I = I
      @[simp]
      theorem Ideal.mem_span_insert {α : Type u} [Semiring α] {s : Set α} {x : α} {y : α} :
      x Ideal.span (insert y s) ∃ (a : α), ∃ z ∈ Ideal.span s, x = a * y + z
      theorem Ideal.mem_span_singleton' {α : Type u} [Semiring α] {x : α} {y : α} :
      x Ideal.span {y} ∃ (a : α), a * y = x
      theorem Ideal.span_singleton_le_iff_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} :
      Ideal.span {x} I x I
      theorem Ideal.span_singleton_mul_left_unit {α : Type u} [Semiring α] {a : α} (h2 : IsUnit a) (x : α) :
      theorem Ideal.span_insert {α : Type u} [Semiring α] (x : α) (s : Set α) :
      theorem Ideal.span_eq_bot {α : Type u} [Semiring α] {s : Set α} :
      Ideal.span s = xs, x = 0
      @[simp]
      theorem Ideal.span_singleton_eq_bot {α : Type u} [Semiring α] {x : α} :
      Ideal.span {x} = x = 0
      theorem Ideal.span_singleton_ne_top {α : Type u_1} [CommSemiring α] {x : α} (hx : ¬IsUnit x) :
      @[simp]
      theorem Ideal.span_zero {α : Type u} [Semiring α] :
      @[simp]
      theorem Ideal.span_one {α : Type u} [Semiring α] :
      theorem Ideal.span_eq_top_iff_finite {α : Type u} [Semiring α] (s : Set α) :
      Ideal.span s = ∃ (s' : Finset α), s' s Ideal.span s' =
      theorem Ideal.mem_span_singleton_sup {S : Type u_1} [CommSemiring S] {x : S} {y : S} {I : Ideal S} :
      x Ideal.span {y} I ∃ (a : S), ∃ b ∈ I, a * y + b = x
      def Ideal.ofRel {α : Type u} [Semiring α] (r : ααProp) :

      The ideal generated by an arbitrary binary relation.

      Equations
      Instances For
        class Ideal.IsPrime {α : Type u} [Semiring α] (I : Ideal α) :

        An ideal P of a ring R is prime if P ≠ R and xy ∈ P → x ∈ P ∨ y ∈ P

        • ne_top' : I

          The prime ideal is not the entire ring.

        • mem_or_mem' : ∀ {x y : α}, x * y Ix I y I

          If a product lies in the prime ideal, then at least one element lies in the prime ideal.

        Instances
          theorem Ideal.isPrime_iff {α : Type u} [Semiring α] {I : Ideal α} :
          Ideal.IsPrime I I ∀ {x y : α}, x * y Ix I y I
          theorem Ideal.IsPrime.ne_top {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) :
          theorem Ideal.IsPrime.mem_or_mem {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {x : α} {y : α} :
          x * y Ix I y I
          theorem Ideal.IsPrime.mem_or_mem_of_mul_eq_zero {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {x : α} {y : α} (h : x * y = 0) :
          x I y I
          theorem Ideal.IsPrime.mem_of_pow_mem {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {r : α} (n : ) (H : r ^ n I) :
          r I
          theorem Ideal.not_isPrime_iff {α : Type u} [Semiring α] {I : Ideal α} :
          ¬Ideal.IsPrime I I = ∃ (x : α) (_ : xI) (y : α) (_ : yI), x * y I
          theorem Ideal.zero_ne_one_of_proper {α : Type u} [Semiring α] {I : Ideal α} (h : I ) :
          0 1
          class Ideal.IsMaximal {α : Type u} [Semiring α] (I : Ideal α) :

          An ideal is maximal if it is maximal in the collection of proper ideals.

          • out : IsCoatom I

            The maximal ideal is a coatom in the ordering on ideals; that is, it is not the entire ring, and there are no other proper ideals strictly containing it.

          Instances
            theorem Ideal.IsMaximal.ne_top {α : Type u} [Semiring α] {I : Ideal α} (h : Ideal.IsMaximal I) :
            theorem Ideal.isMaximal_iff {α : Type u} [Semiring α] {I : Ideal α} :
            Ideal.IsMaximal I 1I ∀ (J : Ideal α) (x : α), I JxIx J1 J
            theorem Ideal.IsMaximal.eq_of_le {α : Type u} [Semiring α] {I : Ideal α} {J : Ideal α} (hI : Ideal.IsMaximal I) (hJ : J ) (IJ : I J) :
            I = J
            theorem Ideal.IsMaximal.coprime_of_ne {α : Type u} [Semiring α] {M : Ideal α} {M' : Ideal α} (hM : Ideal.IsMaximal M) (hM' : Ideal.IsMaximal M') (hne : M M') :
            M M' =
            theorem Ideal.exists_le_maximal {α : Type u} [Semiring α] (I : Ideal α) (hI : I ) :
            ∃ (M : Ideal α), Ideal.IsMaximal M I M

            Krull's theorem: if I is an ideal that is not the whole ring, then it is included in some maximal ideal.

            theorem Ideal.exists_maximal (α : Type u) [Semiring α] [Nontrivial α] :
            ∃ (M : Ideal α), Ideal.IsMaximal M

            Krull's theorem: a nontrivial ring has a maximal ideal.

            Equations
            theorem Ideal.maximal_of_no_maximal {α : Type u} [Semiring α] {P : Ideal α} (hmax : ∀ (m : Ideal α), P < m¬Ideal.IsMaximal m) (J : Ideal α) (hPJ : P < J) :
            J =

            If P is not properly contained in any maximal ideal then it is not properly contained in any proper ideal

            theorem Ideal.span_pair_comm {α : Type u} [Semiring α] {x : α} {y : α} :
            Ideal.span {x, y} = Ideal.span {y, x}
            theorem Ideal.mem_span_pair {α : Type u} [Semiring α] {x : α} {y : α} {z : α} :
            z Ideal.span {x, y} ∃ (a : α) (b : α), a * x + b * y = z
            @[simp]
            theorem Ideal.span_pair_add_mul_left {R : Type u} [CommRing R] {x : R} {y : R} (z : R) :
            Ideal.span {x + y * z, y} = Ideal.span {x, y}
            @[simp]
            theorem Ideal.span_pair_add_mul_right {R : Type u} [CommRing R] {x : R} {y : R} (z : R) :
            Ideal.span {x, y + x * z} = Ideal.span {x, y}
            theorem Ideal.IsMaximal.exists_inv {α : Type u} [Semiring α] {I : Ideal α} (hI : Ideal.IsMaximal I) {x : α} (hx : xI) :
            ∃ (y : α), ∃ i ∈ I, y * x + i = 1
            theorem Ideal.mem_sup_left {R : Type u} [Semiring R] {S : Ideal R} {T : Ideal R} {x : R} :
            x Sx S T
            theorem Ideal.mem_sup_right {R : Type u} [Semiring R] {S : Ideal R} {T : Ideal R} {x : R} :
            x Tx S T
            theorem Ideal.mem_iSup_of_mem {R : Type u} [Semiring R] {ι : Sort u_1} {S : ιIdeal R} (i : ι) {x : R} :
            x S ix iSup S
            theorem Ideal.mem_sSup_of_mem {R : Type u} [Semiring R] {S : Set (Ideal R)} {s : Ideal R} (hs : s S) {x : R} :
            x sx sSup S
            theorem Ideal.mem_sInf {R : Type u} [Semiring R] {s : Set (Ideal R)} {x : R} :
            x sInf s ∀ ⦃I : Ideal R⦄, I sx I
            @[simp]
            theorem Ideal.mem_inf {R : Type u} [Semiring R] {I : Ideal R} {J : Ideal R} {x : R} :
            x I J x I x J
            @[simp]
            theorem Ideal.mem_iInf {R : Type u} [Semiring R] {ι : Sort u_1} {I : ιIdeal R} {x : R} :
            x iInf I ∀ (i : ι), x I i
            @[simp]
            theorem Ideal.mem_bot {R : Type u} [Semiring R] {x : R} :
            x x = 0
            def Ideal.pi {α : Type u} [Semiring α] (I : Ideal α) (ι : Type v) :
            Ideal (ια)

            I^n as an ideal of R^n.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem Ideal.mem_pi {α : Type u} [Semiring α] (I : Ideal α) (ι : Type v) (x : ια) :
              x Ideal.pi I ι ∀ (i : ι), x i I
              theorem Ideal.sInf_isPrime_of_isChain {α : Type u} [Semiring α] {s : Set (Ideal α)} (hs : Set.Nonempty s) (hs' : IsChain (fun (x x_1 : Ideal α) => x x_1) s) (H : ps, Ideal.IsPrime p) :
              @[simp]
              theorem Ideal.mul_unit_mem_iff_mem {α : Type u} [CommSemiring α] (I : Ideal α) {x : α} {y : α} (hy : IsUnit y) :
              x * y I x I
              theorem Ideal.mem_span_singleton {α : Type u} [CommSemiring α] {x : α} {y : α} :
              x Ideal.span {y} y x
              theorem Ideal.span_singleton_le_span_singleton {α : Type u} [CommSemiring α] {x : α} {y : α} :
              theorem Ideal.span_singleton_eq_span_singleton {α : Type u} [CommRing α] [IsDomain α] {x : α} {y : α} :
              theorem Ideal.span_singleton_mul_right_unit {α : Type u} [CommSemiring α] {a : α} (h2 : IsUnit a) (x : α) :
              theorem Ideal.span_singleton_prime {α : Type u} [CommSemiring α] {p : α} (hp : p 0) :
              instance Ideal.IsMaximal.isPrime' {α : Type u} [CommSemiring α] (I : Ideal α) [_H : Ideal.IsMaximal I] :
              Equations
              theorem Ideal.factors_decreasing {α : Type u} [CommSemiring α] [IsDomain α] (b₁ : α) (b₂ : α) (h₁ : b₁ 0) (h₂ : ¬IsUnit b₂) :
              Ideal.span {b₁ * b₂} < Ideal.span {b₁}
              theorem Ideal.mul_mem_right {α : Type u} {a : α} (b : α) [CommSemiring α] (I : Ideal α) (h : a I) :
              a * b I
              theorem Ideal.pow_mem_of_mem {α : Type u} {a : α} [CommSemiring α] (I : Ideal α) (ha : a I) (n : ) (hn : 0 < n) :
              a ^ n I
              theorem Ideal.IsPrime.mul_mem_iff_mem_or_mem {α : Type u} [CommSemiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {x : α} {y : α} :
              x * y I x I y I
              theorem Ideal.IsPrime.pow_mem_iff_mem {α : Type u} [CommSemiring α] {I : Ideal α} (hI : Ideal.IsPrime I) {r : α} (n : ) (hn : 0 < n) :
              r ^ n I r I
              theorem Ideal.pow_multiset_sum_mem_span_pow {α : Type u} [CommSemiring α] [DecidableEq α] (s : Multiset α) (n : ) :
              Multiset.sum s ^ (Multiset.card s * n + 1) Ideal.span (Multiset.toFinset (Multiset.map (fun (x : α) => x ^ (n + 1)) s))
              theorem Ideal.sum_pow_mem_span_pow {α : Type u} [CommSemiring α] {ι : Type u_1} (s : Finset ι) (f : ια) (n : ) :
              (Finset.sum s fun (i : ι) => f i) ^ (s.card * n + 1) Ideal.span ((fun (i : ι) => f i ^ (n + 1)) '' s)
              theorem Ideal.span_pow_eq_top {α : Type u} [CommSemiring α] (s : Set α) (hs : Ideal.span s = ) (n : ) :
              Ideal.span ((fun (x : α) => x ^ n) '' s) =
              theorem Ideal.isPrime_of_maximally_disjoint {α : Type u} [CommSemiring α] (I : Ideal α) (S : Submonoid α) (disjoint : Disjoint I S) (maximally_disjoint : ∀ (J : Ideal α), I < J¬Disjoint J S) :
              theorem Ideal.neg_mem_iff {α : Type u} [Ring α] (I : Ideal α) {a : α} :
              -a I a I
              theorem Ideal.add_mem_iff_left {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
              b I(a + b I a I)
              theorem Ideal.add_mem_iff_right {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
              a I(a + b I b I)
              theorem Ideal.sub_mem {α : Type u} [Ring α] (I : Ideal α) {a : α} {b : α} :
              a Ib Ia - b I
              theorem Ideal.mem_span_insert' {α : Type u} [Ring α] {s : Set α} {x : α} {y : α} :
              x Ideal.span (insert y s) ∃ (a : α), x + a * y Ideal.span s
              @[simp]
              theorem Ideal.span_singleton_neg {α : Type u} [Ring α] (x : α) :
              theorem Ideal.eq_bot_or_top {K : Type u} [DivisionSemiring K] (I : Ideal K) :
              I = I =

              All ideals in a division (semi)ring are trivial.

              A bijection between between (left) ideals of a division ring and {0, 1}, sending to 0 and to 1.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations

                Ideals of a DivisionSemiring are a simple order. Thanks to the way abbreviations work, this automatically gives an IsSimpleModule K instance.

                Equations
                theorem Ideal.mul_sub_mul_mem {R : Type u_1} [CommRing R] (I : Ideal R) {a : R} {b : R} {c : R} {d : R} (h1 : a - b I) (h2 : c - d I) :
                a * c - b * d I
                theorem Ring.exists_not_isUnit_of_not_isField {R : Type u_1} [CommSemiring R] [Nontrivial R] (hf : ¬IsField R) :
                ∃ (x : R) (_ : x 0), ¬IsUnit x

                Also see Ideal.isSimpleOrder for the forward direction as an instance when R is a division (semi)ring.

                This result actually holds for all division semirings, but we lack the predicate to state it.

                theorem Ring.ne_bot_of_isMaximal_of_not_isField {R : Type u_1} [CommSemiring R] [Nontrivial R] {M : Ideal R} (max : Ideal.IsMaximal M) (not_field : ¬IsField R) :

                When a ring is not a field, the maximal ideals are nontrivial.

                theorem Ideal.bot_lt_of_maximal {R : Type u} [CommSemiring R] [Nontrivial R] (M : Ideal R) [hm : Ideal.IsMaximal M] (non_field : ¬IsField R) :
                < M
                def nonunits (α : Type u) [Monoid α] :
                Set α

                The set of non-invertible elements of a monoid.

                Equations
                Instances For
                  @[simp]
                  theorem mem_nonunits_iff {α : Type u} {a : α} [Monoid α] :
                  theorem mul_mem_nonunits_right {α : Type u} {a : α} {b : α} [CommMonoid α] :
                  b nonunits αa * b nonunits α
                  theorem mul_mem_nonunits_left {α : Type u} {a : α} {b : α} [CommMonoid α] :
                  a nonunits αa * b nonunits α
                  theorem zero_mem_nonunits {α : Type u} [Semiring α] :
                  0 nonunits α 0 1
                  @[simp]
                  theorem one_not_mem_nonunits {α : Type u} [Monoid α] :
                  1nonunits α
                  theorem coe_subset_nonunits {α : Type u} [Semiring α] {I : Ideal α} (h : I ) :
                  I nonunits α
                  theorem exists_max_ideal_of_mem_nonunits {α : Type u} {a : α} [CommSemiring α] (h : a nonunits α) :
                  ∃ (I : Ideal α), Ideal.IsMaximal I a I