Documentation

EuclideanGeometry.Foundation.Axiom.Basic.Angle.FromMathlib

APIs about Angle from Mathlib #

We use AngValue as an alias of Real.Angle.

The canonical map from to the quotient AngValue.

Equations
  • r = r
Instances For

    Coercion ℝ → AngValue as an additive homomorphism.

    Equations
    Instances For
      theorem EuclidGeom.AngValue.induction_on {p : EuclidGeom.AngValueProp} (θ : EuclidGeom.AngValue) (h : ∀ (x : ), p x) :
      p θ

      An induction principle to deduce results for AngValue from those for , used with induction θ using AngValue.induction_on.

      @[simp]
      @[simp]
      theorem EuclidGeom.AngValue.coe_add (x : ) (y : ) :
      (x + y) = x + y
      @[simp]
      theorem EuclidGeom.AngValue.coe_neg (x : ) :
      (-x) = -x
      @[simp]
      theorem EuclidGeom.AngValue.coe_sub (x : ) (y : ) :
      (x - y) = x - y
      theorem EuclidGeom.AngValue.coe_nsmul (n : ) (x : ) :
      (n x) = n x
      theorem EuclidGeom.AngValue.coe_zsmul (z : ) (x : ) :
      (z x) = z x
      @[simp]
      theorem EuclidGeom.AngValue.coe_nat_mul_eq_nsmul (x : ) (n : ) :
      (n * x) = n x
      @[simp]
      theorem EuclidGeom.AngValue.coe_int_mul_eq_zsmul (x : ) (n : ) :
      (n * x) = n x
      theorem EuclidGeom.AngValue.eq_iff_two_pi_dvd_sub {ψ : } {θ : } :
      θ = ψ ∃ (k : ), θ - ψ = 2 * Real.pi * k
      @[simp]
      theorem EuclidGeom.AngValue.two_nsmul_coe_div_two (θ : ) :
      2 (θ / 2) = θ
      @[simp]
      theorem EuclidGeom.AngValue.two_zsmul_coe_div_two (θ : ) :
      2 (θ / 2) = θ
      theorem EuclidGeom.AngValue.zsmul_eq_iff {ψ : EuclidGeom.AngValue} {θ : EuclidGeom.AngValue} {z : } (hz : z 0) :
      z ψ = z θ ∃ (k : Fin (Int.natAbs z)), ψ = θ + k (2 * Real.pi / z)
      theorem EuclidGeom.AngValue.nsmul_eq_iff {ψ : EuclidGeom.AngValue} {θ : EuclidGeom.AngValue} {n : } (hz : n 0) :
      n ψ = n θ ∃ (k : Fin n), ψ = θ + k (2 * Real.pi / n)
      theorem EuclidGeom.AngValue.cos_eq_iff_coe_eq_or_eq_neg {θ : } {ψ : } :
      Real.cos θ = Real.cos ψ θ = ψ θ = -ψ
      theorem EuclidGeom.AngValue.sin_eq_iff_coe_eq_or_add_eq_pi {θ : } {ψ : } :
      Real.sin θ = Real.sin ψ θ = ψ θ + ψ = Real.pi
      theorem EuclidGeom.AngValue.cos_sin_inj {θ : } {ψ : } (Hcos : Real.cos θ = Real.cos ψ) (Hsin : Real.sin θ = Real.sin ψ) :
      θ = ψ
      @[simp]
      theorem EuclidGeom.AngValue.coe_toIcoMod (θ : ) (ψ : ) :
      (toIcoMod Real.two_pi_pos ψ θ) = θ
      @[simp]
      theorem EuclidGeom.AngValue.coe_toIocMod (θ : ) (ψ : ) :
      (toIocMod Real.two_pi_pos ψ θ) = θ

      Convert a AngValue to a real number in the interval Ioc (-π) π.

      Equations
      Instances For

        The sign of a AngValue is 0 if the angle is 0 or π, 1 if the angle is strictly between 0 and π and -1 is the angle is strictly between and 0. It is defined as the sign of the sine of the angle.

        Equations
        Instances For
          theorem ContinuousOn.angValue_sign_comp {α : Type u_1} [TopologicalSpace α] {f : αEuclidGeom.AngValue} {s : Set α} (hf : ContinuousOn f s) (hs : zs, f z 0 f z Real.pi) :
          theorem EuclidGeom.AngValue.sign_eq_of_continuousOn {α : Type u_1} [TopologicalSpace α] {f : αEuclidGeom.AngValue} {s : Set α} {x : α} {y : α} (hc : IsConnected s) (hf : ContinuousOn f s) (hs : zs, f z 0 f z Real.pi) (hx : x s) (hy : y s) :

          Suppose a function to angles is continuous on a connected set and never takes the values 0 or π on that set. Then the values of the function on that set all have the same sign.

          theorem Complex.arg_neg_coe_angValue {x : } (hx : x 0) :
          (Complex.arg (-x)) = (Complex.arg x) + Real.pi
          theorem Complex.arg_mul_coe_angValue {x : } {y : } (hx : x 0) (hy : y 0) :
          (Complex.arg (x * y)) = (Complex.arg x) + (Complex.arg y)
          theorem Complex.arg_div_coe_angValue {x : } {y : } (hx : x 0) (hy : y 0) :
          (Complex.arg (x / y)) = (Complex.arg x) - (Complex.arg y)