Documentation

EuclideanGeometry.Foundation.Axiom.Linear.Perpendicular

def EuclidGeom.Perpendicular {α : Type u_2} {β : Type u_3} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] (l₁ : α) (l₂ : β) :

This defines two projective objects to be perpendicular, i.e. their associated projective directions are perpendicular.

Equations
Instances For

    Abbreviate Perpendicular $l_1$ $l_2$ to $l_1$ IsPerpendicularTo $l_2$ or $l_1$ $\perp$ $l_2$.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]

          A projective object $l$ is not perpendicular to itself.

          theorem EuclidGeom.Perpendicular.symm {α : Type u_2} {β : Type u_3} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] {l₁ : α} {l₂ : β} (h : EuclidGeom.Perpendicular l₁ l₂) :
          theorem EuclidGeom.parallel_of_perp_perp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] [EuclidGeom.ProjObj γ] {l₁ : α} {l₂ : β} {l₃ : γ} (h₁ : EuclidGeom.Perpendicular l₁ l₂) (h₂ : EuclidGeom.Perpendicular l₂ l₃) :

          If $l_1$ is perpendicular to $l_2$ and $l_2$ is perpendicular to $l_3$, then $l_1$ is perpendicular to $l_3$.

          theorem EuclidGeom.perp_of_parallel_perp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] [EuclidGeom.ProjObj γ] {l₁ : α} {l₂ : β} {l₃ : γ} (h₁ : EuclidGeom.Parallel l₁ l₂) (h₂ : EuclidGeom.Perpendicular l₂ l₃) :
          theorem EuclidGeom.Parallel.trans_perp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] [EuclidGeom.ProjObj γ] {l₁ : α} {l₂ : β} {l₃ : γ} (h₁ : EuclidGeom.Parallel l₁ l₂) (h₂ : EuclidGeom.Perpendicular l₂ l₃) :

          Alias of EuclidGeom.perp_of_parallel_perp.

          theorem EuclidGeom.perp_of_perp_parallel {α : Type u_2} {β : Type u_3} {γ : Type u_4} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] [EuclidGeom.ProjObj γ] {l₁ : α} {l₂ : β} {l₃ : γ} (h₁ : EuclidGeom.Perpendicular l₁ l₂) (h₂ : EuclidGeom.Parallel l₂ l₃) :
          theorem EuclidGeom.toProj_ne_toProj_of_perp {α : Type u_2} {β : Type u_3} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] {l₁ : α} {l₂ : β} (h : EuclidGeom.Perpendicular l₁ l₂) :

          If $l_1$ is perpendicular to $l_2$, then they have different projective direction.

          theorem EuclidGeom.not_parallel_of_perp {α : Type u_2} {β : Type u_3} [EuclidGeom.ProjObj α] [EuclidGeom.ProjObj β] {l₁ : α} {l₂ : β} (h : EuclidGeom.Perpendicular l₁ l₂) :

          Given a point $A$ and a line $l$, this function returns the line through $A$ perpendicular to $l$.

          Equations
          Instances For
            @[simp]

            For a point $A$ and a line $l$, the line through $A$ perpendicular to $l$ constructed using perp_line is perpendicular to $l$.

            theorem EuclidGeom.toProj_ne_perp_toProj {P : Type u_1} [EuclidGeom.EuclideanPlane P] (A : P) (l : EuclidGeom.Line P) :
            l.toProj (EuclidGeom.perp_line A l).toProj

            For a point $A$ and a line $l$, the projective direction of $l$ is different from the projective direction of the line through $A$ perpendicular to $l$.

            For a point $A$ and a line $l$, this function returns the perpendicular foot from $A$ to $l$.

            Equations
            Instances For

              Given a point $A$ and a line $l$, the perpendicular foot from $A$ to $l$ is the same as $A$ if and only if $A$ lies on $l$.

              If a point $A$ does not lie on a line $l$, then the line through $A$ and the perpendicular root from $A$ to $l$ is the line through $A$ perpendicular to $l$.

              If a point $A$ does on lie on a line $l$, the line through $A$ and the perpendicular roort from $A$ to $l$ is perpendicular to $l$.

              This function returns the distance from a point $A$ to a line $l$, as the distance between $A$ and the perpendicular root from $A$ to $l$.

              Equations
              Instances For
                theorem EuclidGeom.perp_foot_unique' {P : Type u_1} [EuclidGeom.EuclideanPlane P] {A : P} {B : P} {l : EuclidGeom.DirLine P} (h : EuclidGeom.lies_on B l) [_hne : EuclidGeom.PtNe A B] (hp : EuclidGeom.Perpendicular (DLIN A B) l) :
                EuclidGeom.perp_foot A l.toLine = B

                Let $B$ be a point on a line $l$, then the distance from a point $A$ to $B$ is greater or equal to the distance from $A$ to $l$.

                theorem EuclidGeom.perp_foot_eq_inner_smul_toDir_unitVec_vadd {P : Type u_1} [EuclidGeom.EuclideanPlane P] (A : P) (B : P) {l : EuclidGeom.DirLine P} (ha : EuclidGeom.lies_on A l) :
                EuclidGeom.perp_foot B l.toLine = inner (EuclidGeom.Vec.mkPtPt A B) l.toDir.unitVec l.toDir.unitVec +ᵥ A